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Abstract

Discrete e�ects of the plasma irradiated by an ultrashort, intense

laser pulse are investigated. Although, for most plasmas of interest,

the damping of the laser pulse is due to collective plasma e�ects, in

certain regimes the energy absorbed in the plasma micro�elds can be

important. A scattering matrix is derived for an electron scattering

o� an ion in the presence of an intense laser �eld.
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I. INTRODUCTION

The increasing degree of interest in high intensity lasers motivates a the-

oretical examination of the behavior of plasma in the �elds of such lasers.

Many recent studies are devoted to analysis of collective behaviour1; however,

there is a need, addressed here, to examine discrete particle e�ects inside a

very short electromagnetic pulse of linear polarization and of arbitrary am-

plitude.

The problem of collisional absorption2 has been studied extensively for

low intensity �elds, where the electron velocity is not relativistic, and for

time scales longer than collisional time. Now, very high intensity �elds (1018

W/cm2 and above) can be achieved in very short pulses3. For underdense

plasma, the duration of such pulses is less than an inverse plasma frequency,

and, hence, for ideal plasmas, even less than a collision time. Therefore, to

�nd the amount of energy deposited into the plasma due to its discreteness, a

standard approach, such as by using the Fokker-Planck collisional operator,

may not be valid. Neither is one allowed to assume that the electron motion

is nonrelativistic4.

In this paper, we address collisional e�ects in just this ultraintense, ul-

trashort laser regime, and we �nd the change in the energy of plasma mi-
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cro�elds (usually refered to as a correlational energy) due to the interaction

of electrons with the laser pulse. Although, for plasma with an electron tem-

perature Te � 1 eV and a very intense, � � 1, short 0:1 ps laser pulse, the

damping of the pulse is due to collective e�ects, and the collective energy

sets up a plasma wake. Here the nonlinearity paramter � is � = ea=mc2,

where a is a wave vector potential, c is the velocity of light, �e the elec-

tron charge, and m the electron mass. On the other hand, for a plasma at

Te � 0:01 eV and for a very short, moderately intense pulse, we �nd that

the correlational energy can be greater than the energy stored in the plasma

oscillations. Interestingly, in this regime, in which a plasma is irradiated by

the laser waves, discrete (collisional) e�ects dominate collective e�ects. In

contrast, in an ideal plasma , in the absence of any external �elds, collisional

e�ects are always down in magnitude by a factor of ne�
3

d, where ne is an

electron density and �d is a Debye length.

The problem of two particle collisions in the presence of an intense laser

pulse remains unexplored for 
ux densities, so intense that the particle mo-

tion becomes relativistic. It corresponds to the nonlinearity paramter � =

ea=mc being of the order unity. For visible light � � 1 for a 
ux density

� 1018 W/cm2. We analyze here the case of the scattering of an electron by
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the ion in the laser �eld at such intense 
ux densities. The �nal answer is

presented in terms of a scattering matrix, which describes interaction of two

particles both inside and outside the laser pulse.

Suppose a wave packet propagates in the x direction, with vector potential

a(t� x=c). Suppose further that a(t� x=c < 0) = a(t� x=c > T ) = 0. The

pulse is then characterized by two time scales: its mean frequency �! and its

total phase duration T . The frequency width of the wave packet is �!, such

that T�! � 1. We assume that the pulse travels at the velocity of light,

which is a good approximation for waves in an underdense plasma. This

approximation becomes even better for very intense waves4.

Describing the interaction of plasma with a laser pulse of high intensity

(� � 1) is complicated, because one can not use a dipolar expansion5, which

assumes � � 1. But the limit of a very short pulse is tractable5. If the

pulse spectra is broad enough, i.e. !p=�! < 1, so that the pulse duration is

shorter than the time for the electrons to set up a collective response, the

plasma collective �eld can be treated as a perturbation to the laser �eld.

Recent advances in pulse compression3 now make possible pulses as short as

T � 0:1 ps, for which the above inequality holds for plasmas with densities

up to 1018 cm�3.
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Consider an electron and an ion (Z = 1) inside a laser pulse. For dis-

tances between them such that e2=r2 < ea!=c, one can treat the ion �eld

as a perturbation to that of the laser. For the 
uxes under consideration

(� � 1), the minimum distance up to which the above inequality holds is

rmin �
p
re�, where re = e2=mc2 is the classical radius of an electron, and �

is the wavelength of the radiation. For visible light, rmin � 10�9 cm. Clas-

sical mechanics can be employed if the de Broglie wavelength of an electron

�e = h=m
v � 10�9 cm (
 = 1=
p
1� v2=c2, and v is the typical electron ve-

locity in the laser pulse) is less than the distance between two particles. We

see that over the range of distances, from1 to �e � 10�9 cm, where classical

mechanics is valid, the ion �eld remains less than that of the laser and we

can employ perturbation theory.

The paper is organized as follows: In Sec. II we calculate the correlational

energy after the pulse. In Sec. III, we study the relativistic interaction of

an electron with an ion in the presence of a laser pulse. In Sec. IV, we

generalize our results to �nite initial velocity and derive the scattering matrix

for ultrashort interactions. In Sec. V, our results are summarized.

To simplify the presentation in Sec. III, we use m = c = �e = 1, so the

nonlinearity parameter � is in fact a; elsewhere, all quantities are expressed

5



in c.g.s. units.

II. CORRELATIONAL ENERGY AFTER THE PULSE

Consider an ultrashort laser pulse, propagating in the x direction, with

the width �! larger than the plasma frequency !p. In this limit, the plasma

collective �eld is smaller than that of the pulse. To zeroth order in !2

p=�!
2,

the only e�ect of the laser in the framework of the 
uid model is a displace-

ment of each electron in the direction of the pulse by1

h0 =
1

2

�
e

mc2

�
2 Z T

0

a2(u)du: (1)

This displacement sets up a plasma wave behind the pulse with the energy

given by5 �pl = 2�h2
0
n2e2. One can treat this value as a part of the total

energy deposited in the plasma by the pulse. Another part comes from

the change of the energy stored into the micro�elds (we neglect the plasma

corrections to the exit velocity and displacement for very short pulses5),

which are always present due to discrete nature of the plasma. This energy

is usually refered to as a correlational energy6. Its equilibrium quantity is

obtained by averaging the potential energy of two particles, using the two-

particle equilibrium correlation function

gss0(r) = 1� qsqs0

Te

exp(�r=�d)
r

; (2)
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where Te is the plasma temperature, �d is the Debye length, and r is the

distance between two particles with charges qs and qs0 .

While the laser pulse clearly disturbs the plasma two-particle equilibrium

distribution, for a short pulse, each Debye cloud is almost intact right after

the pulse, since we assume �! > !p. The change in electron temperature due

to collisions with the ions inside the pulse is small, �Te � Te. Hence, one

can use for the quantities �d and Te their initial values before the pulse. The

correlational energy density of the plasma consists of three parts,

�corr = �ee + �ii + �ei; (3)

representing contributions from electron-electron, ion-ion, and electron-ion

correlations respectively. Since, in our model, the only e�ect of the laser is

an instantaneous displacement of each electron by the distance h0, it is clear

that the interaction with the wave will change only the term �ei. Then its

value after the pulse, ~�ei, is determined by the potential energy of the ion in

the displaced cloud of electrons, namely

~�ei = n qi�(ri); (4)

where �(ri) is an electric potential of the cloud at the ion's position and

n = ne = ni is the plasma density.
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Let us choose the coordinate system with its origin at the center of a

spherically symmetric electron cloud (see Fig. ). Then the radius vector of

the ion is �h0. The electrostatic potential is determined from the solution

of the Poisson equation

�(�h0) =
Z

ne(r)qe

j r� h0 j
dV; (5)

where ne(r) = negei(r) is the cloud density. Using an expansion in Legendre

polynomials,

1

j r+ h0 j
=

(
(1=r)

P
l(h0=r)

lPl(cos �); if h0 < r

(1=h0)
P

l(r=h0)
lPl(cos �); if h0 > r

the integration in equation (5) can be carried out easily. We �nd an energy

density di�erence ��corr = 2�n2e2h0b0, where b0 =j qeqi j =Te is the classical

distance of closest approach. The ratio of the increase in the correlational

energy to the energy of collective plasma oscillations is

��corr

�pl
=

b0

h0
= 0:96 � 10�17 �!

2��2Te [eV]
; (6)

indicating the relative importance of collective e�ects in comparison to sin-

gle particle e�ects. Depending on the plasma temperature and the pulse

duration, this fraction can be either greater or less than unity. This is in

contrast to an ideal plasma, not subject to any external �elds, where discrete

8



(collisional) e�ects are always down in magnitude by � n�3d. For example,

a very short, T � 0:01 ps, intense, � � 0:2 electro-magnetic pulse, propa-

gating through the Earth ionosphere plasma (n � 105 cm�3, Te � 0:01 eV,

n�3d � 1:2 � 103) deposits twice as much energy into the plasma micro�elds

than into plasma oscillations. We show the regions, where ��corr=�pl > 1, in

the Fig. 2a.

The quantity ��corr complements the picture of discrete losses investi-

gated in Ref. [5]. It is interesting to compare it with the incoherent Compton

losses !2

pS (Eqs. (38), (52) in Ref. [5]). Their ratio scales like:

��corr

�compt

=
1

4�

�
!p

�!

�
2 mc2

�2Te

=
6:75 � 104
�2Te [eV]

�
!p

�!

�
2

: (7)

In Fig. 2b, we distinguish, by regions in � � Te space, where each of these

loss mechanisms dominates.

III. SCATTERING OF AN ELECTRON BY AN ION IN THE

PRESENCE OF A LASER PULSE

We will brie
y review the interaction of a single electron with a pulse of

high intensity, and then we will carry out the analysis in the presence of the

ion �eld. Let us start with equations of motion for an electron in a laser
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pulse of linear polarization along y axis,

dp

dt
= _a+ v � (n� _a);

d


dt
= _a � v; (8)

where the wave vector n is in the x-direction, the electron momentum is

denoted by p, and the velocity by v. The dot stands for di�erentiation with

respect to the phase argument, t� x, and 
 is the relativistic energy. After

some algebra, one can �nd that the quantity 
�n �p is a constant of motion,

which is equal to 
�n �p = 1 for an electron with zero initial velocity. Using

this invariant, we solve for the proper time, � = t� x, and the displacement

hx(� ) =
1

2

Z �

0

a2(u)du; hy(� ) =
Z �

0

a(u)du; hz = 0: (9)

In obtaining (9) we have used conservation of canonical transverse momen-

tum, n�p = n�a. For an electron initially at the origin, the kinetic energy

is then given by


(� ) = 1 +
1

2
a2(� ): (10)

Let us now address the problem of interaction of an electron with an ion

in the presence of a laser pulse. We assume the ion with charge state Z = 1 to

be stationary at the origin and the electron to have zero velocity and position

~ri = (xi; yi; zi), when it is hit by the pulse at the point A (see Fig. 3). During

10



the body of the pulse the electron will move along the trajectory AB, at the

end of which it will gain the exit velocityVB due to interaction with the ion.

We now proceed to calculate the exit velocity and position of the electron.

The natural length of this problem is �, the wavelength of a laser radia-

tion. The Coulomb force on the electron in dimensionless form (we express

lengths in terms of �) is then given by

f = �� r
r3
; (11)

where � = re=�, with re being an electron radius. Now one can write down

an equation of motion of an electron in the �elds both of the ion and of the

laser:

dp

dt
= _a+ f + v � (n� _a);

d


dt
= ( _a+ f) � v: (12)

By assumption, the ion �eld is smaller than that of the laser for distances

up to 10�9 cm, so we expand all dynamical quantities h, 
 and so on, about

the exact result, Eq. (9) and Eq. (10), the expansion parameter being f=!a.

Accordingly, the �rst order system of equations to be solved is

dpx
1

d�
=

1

2
(t1 � hx

1
) �a2(t0 � hx

0
)� � fx(�0)
0(�0) (13)

d
1

d�
=

1

2
(t1 � hx

1
) �a2(t0 � hx

0
)� � [fx(�0)p

x
0
+ fy(�0)p

y
0
] (14)
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dhx
1

d�
= px

1
(15)

dt1

d�
= 
1 (16)

dp
y
1

d�
= (t1 � hx

1
)�a(t0 � hx

0
)� � fy(�0)
0(�0) (17)

dpz
1

d�
= �� fz(�0)
0(�0); (18)

where �0 = t0 � hx
0
and f(�0) is a force vector, with electron's coordinates

lying on its zero order trajectory (part AB in the Fig. 2)

x(�0) = xi + hx
0
(�0); y(�0) = yi + hy

0
(�0); z(�0) = zi: (19)

We can now subtract Eq. (14) from Eq. (13) to obtain an expression for

the 
1 � px
1
. Then we solve for the perturbation of the proper time


1 � px
1
= �

Z �

0

[fx(u)� fy(u)a(u)]du (20)

t1 � hx
1
= �

Z �

0

ds
Z s

0

[fx(u)� fy(u)a(u)]du: (21)

With these expressions for the �rst order quantities Eq. (13) can be solved

explicitly. After integration twice by parts we obtain

px
1

=
�

2

�
_a2(� )

Z �

0

du
Z u

0

[fx(v)� fy(v)a(v)]dv �

a2(� )
Z �

0

[fx(v)� fy(v)a(v)]dv

�
� �

Z �

0

[
a3(u)

2
fy(u) + fx(u)]du;
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and similar expressions for py
1
and pz

1
. Now the exit velocity can be calculated

using V = p0 + p1(T )=(
0(T ) + 
1(T )) to give

V x
c = ��

Z T

0

[fx(u) +
1

2
a3(u)fy(u)]du; (22)

V y
c = �

Z T

0

[a(u)fx(u)� fy(u)(1 +
3

2
a2(u))]du; (23)

V z
c = ��

Z T

0

fz(u)(1 +
1

2
a2(u))du: (24)

The subscript \c" (cold) indicates that this solution assumed zero initial

electron velocity . The exit displacement, given in Appendix, can be obtained

by integrating p1 with respect to the proper time.

The above equations allow simple interpretation. One can treat the zero

order trajectory of the electron (Fig. 3) as a �nite{mass string in an external

force �eld, its shape given by parameterized Eqs. (19). This string has a

mass tensor varying over u (u being a parameter, characterizing a current

position on the string). Then the integrations in Eqs. (22), (23), (24) are,

in e�ect, averaging the force of the ion over the inverse mass tensor of the

string, the inverse tensor components given by respective coe�cients in these

equations:

m�1

xx = 1; m�1

xy =
1

2
a3(u); (25)

m�1

yx = a(s); (26)
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m�1

yy =

�
1 +

3

2
a2(u)

�
; (27)

m�1

yz = m�1

zy = m�1

xz = m�1

zx = 0; (28)

m�1

zz =

�
1 +

1

2
a2(u)

�
: (29)

This analogy will help us to understand dependence of Vc on the elec-

tron's initial position ri . We �xed yi = 0 and zi = 0:1 and plotted Vc versus

xi (see Figs. 4 and 5). For simplicity, we chose the form of the pulse to be

a(u) = sin(u); 0 < u < T , where T = 6�. The periodic behavior of Vc versus

xi (Fig. 4) is due to periodic structure of the electron's zero order trajectory

in this direction. The spikes on the curves correspond to the minimum ap-

proach to the ion. Their amplitude varies with respect to xi, because the ion

divides the string in varying ratio. The spikes are singular as z! 0, because

the distance of minimum approach also tends to 0. The plots of Vc versus yi

(Fig. 5), xi and zi being �xed, do not exhibit periodicity, because of the lack

of periodicity in the zero order trajectory of the electron in this direction.

The exit velocity and displacement fully describe the scattering in the

presence of the pulse. In Sec. IV, we use these quantities as initial conditions

for the electron motion in the �eld of the ion after the pulse to describe the

whole scattering process.
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IV. SCATTERING MATRIX

In this Section we extend the analysis given in Sec. III to the case of

non-zero Vi initial velocity of an electron and obtain scattering matrix. We

assume that Vi is nonrelativistic and �nd �rst order O(Vi) corrections to our

previous results. First, let us modify the quantities describing the electron

motion in the wave alone. The invariant of motion 
0 � px
0
will be


0 � px
0
= 1 � V x

i : (30)

The relation between the phase argument of a and the proper time �0 is then

t0 � hx
0
= (1� V x

i )�0: (31)

The y component of momentum py
0
is modi�ed in a straightforward way

p
y
0
= V

y
i + a: (32)

Eqs. (30), (31), and (32) lead to the following expression for the electron

kinetic energy


0(�0) = 1 +
1

2
a2(�0) + a(�0)V

y
i +

1

2
a2(�0)V

x
i : (33)

To �nd O(Vi) corrections to the exit velocityVc, given in (22), (23), (24),

we will now perform the same analysis as in Sec. III with new values of t0�hx0,
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py
0
etc., given in (30), (31), (32) and (33), to arrive at

0
B@

V x

V y

V z

1
CA =

0
B@

V x
c

V y
c

V z
c

1
CA+

0
B@

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

1
CA
0
B@

V x
i

V
y
i

V z
i

1
CA (34)

The matrix �ij is given in the Appendix. It does not exhibit any symme-

try, because the electron-laser and electron-ion interactions possess di�erent

symmetries.

So we know the exit velocity and displacement after the laser pulse. Next

we consider the Coulomb scattering in the �eld of the ion, after the electron

has interacted with the pulse, to obtain the �nal velocity of the electron at

in�nity. The exit velocity and displacement upon leaving the pulse are now

taken as initial conditions in the scattering by the ion. The electron energy

and its angular momentum are invariants of motion. At the very moment

the electron exits the pulse,

L = j V �R j; E =
1

2
V 2 � �

R
; (35)

where R is the radius vector of the electron at that moment (see Appendix).

Let us introduce contraction coe�cient

k =

p
2E

V
; (36)

which is the ratio of the velocity at in�nity V1 to the exit velocity V . The
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impact parameter is then

b =
j V �R j

V k
: (37)

We are left to �nd the angle � between V1 and V = VB (see Fig. 3).

It can be done most easily in the plane of collision. Using the exact solution

for the electron motion, we relate angles � and �1 to R and b

cos � =
b=R � bv=bp
1 + (b2v=b

2)
; cos�1 =

(bv=b)p
1 + (b2v=b

2)
; (38)

where bv = 1=V 2

1
. Note that we use m = c = e = 1 units in this Section.

The angle of rotation � is then given by

� =

(
�� �1; if (V �R) < 0

�+ �1 � �; if (V �R) > 0
; (39)

where the sign of V �R determines whether an electron will follow part BC

or BD of the trajectory (Fig. 3). The scattering matrix, which relates V1

to V, can be written in the form

Cik = k(cos��ik + sin��ijknj + (1� cos�)nink): (40)

Its structure is simple: it contracts the absolute value of velocity from VB

to V1 and rotates V in the plane of collision by the angle �, given in (39).

The axis of rotation is parallel to the vector n = (R �V)=(R V ), which is
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normal to the plane of collision. It turns out that matrix (40) can be most

easily obtained through the quaternion formalism. The quaternion, which

rotates a vector around axis n by an angle � , is

� = cos
�

2
+ n sin

�

2
: (41)

The rotation of an arbitrary vector b can be then written in the form

b0 = � � b � ~�; (42)

where � stands for quaternion multiplication and ~� is conjugated quaternion.

After some algebra Eq. (42) gives matrix Cik (40).

Now we can write the �nal velocity V1 as a product of two matrices, we

have found:

V l
1
= Clj(�jkV

k
i + V j

c ): (43)

Eq. (43) describes the whole scattering process from point A to 1 (Fig. 3),

which includes the interaction with the laser and Coulomb scattering in the

�eld of the ion.

The expression in parentheses is VB, the exit velocity of the electron due to

the interaction with the �eld of a single ion. It was obtained via linearization

around the zero order trajectory of the electron. This description of the
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scattering process can be incorporated into a collisional operator by averaging

over the initial position ri of the electron
7, in order to describe the plasma

response to several short pulses. The derivation of such a collisional operator

is, however, beyond the scope of this paper.

V. DISCUSSION AND CONCLUSIONS

In summary, in this paper we investigated the role of discrete particle

e�ects in the energy absorption from an ultra-short laser pulse of high inten-

sity. It was shown that for very short (� 0:09 ps) and moderately intense

(� � 0:01) pulses the change in correlational energy of the plasma at 1 eV

temperature is greater than the energy stored in plasma oscillations. This

dominance of discrete (collisional) over collective e�ects, even when n�3d � 1,

is opposite to the usual collisional e�ects, which are always down in mag-

nitude by n�3d. We note, however, that for very intense pulses, � � 1 with

duration � 0:1 ps, the energy of plasma oscillations is greater than the cor-

relational energy, according to Eq. (6).

Although collisions due to initial nonrelativistic thermal velocity do not

take place during the laser pulse, each electron acquires a relativistic velocity

in the laser pulse and moves a certain distance in the �elds of the ions. As

a result of these background �elds, the exit velocity at the end of the pulse
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is a�ected. This process can be called an \induced collision" to distinguish

from an ordinary Coulomb collision, when the only �elds present are those

of the particles themselves.

The scattering matrix for the induced collisions, Eqs. (22), (23), (24), and

(34), is applicable to electron{ion collisions in the presence of the intense laser

pulses. The corrections to the exit velocity and displacement of the electron

can also be used to obtain a collisional operator that would describe the

in
uence of several short pulses on the plasma. This is, however, beyond the

scope of the present paper.
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APPENDIX: CALCULATION OF THE SCATTERING MA-

TRIX

Let us write �rst order corrections to the exit displacement due to the

ion �eld. They are obtained by integrating px
1
(� ); py1(� ); p

z
1
(� ) respectively,
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which gives:

hx
1

= ��
Z T

0

a2(u)du
Z u

0

[fx(s)� fy(s)a(s)]� �

Z T

0

du

Z u

0

[
a3(s)

2
fy(s) + fx(s)]ds;

hy
1

= ��
Z T

0

2a(s)ds
Z s

0

[fx(s)� fy(s)a(s)] + �
Z T

0

a(s)[fx(s)

�fy(s)a(s)]ds� �
Z T

0

du
Z u

0

fy(s)(1 +
1

2
a2(s))ds;

hz
1

= ��
Z T

0

ds

Z s

0

fz(u)(1 +
1

2
a2(u))du:

Now we will determine coe�cients of the �ij matrix (34).

It is easy to �nd, using (30), (31), (32), (33), that equations of trajectory

with the �rst order O(Vi) corrections can be written as

0
B@

x0
y0
z0

1
CA =

0
B@

xi
yi
zi

1
CA+

0
B@

�xx �xy 0

�yx �yy 0
0 0 �zz

1
CA
0
B@

V x
i

V
y
i

V z
i

1
CA +

0
B@

hx
0

h
y
0

0

1
CA

where the �ij matrix coe�cients are given by

�xx(� ) =
R �
0
(1 + a2(u))du; �xy(� ) =

R �
0
a(u)du;

�yx(� ) =
R �
0
a(u)du; �yy(� ) = �zz(� ) = �:

And the zero order trajectory is given by Eq. (9).

We will denote the electron's radius vector, following zero order trajectory,

by

r(� ) = [(xi + hx
0
(� ))2 + (yi + hy

0
(� ))2 + z2i ]

3=2:
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Then after analysis similar to that of in Sec. III the �ij matrix compo-

nents are:

�xx = 1� �

Z T

0

[fx(s)(1 + a2(s)) +
1

2
a3(s)fy(s)�

�xx(s) +
1

2
�yx(s)

r3(s)
]ds;

�xy = ��
Z T

0

[a(s)fx(s) +
1

2
a2(s)fy(s) +

�xy(s) +
1

2
a3(s)�yy(s)

r3(s)
]ds;

�xz = ��
Z T

0

1

2
a2(s)fz(s)ds;

�yx = ��
Z T

0

a(s)ds
Z s

0

[fx(s)� a(s)fy(s) +
�xx(s)� a(s)�yx(s)

r3(s)
]ds

��
Z T

0

1 + 1

2
a2(s)

r3(s)
ds
Z s

0

a(u)du� �
Z T

0

fy(s)(1 + a2(s))ds;

�yy = 1� �

Z T

0

a(s)ds
Z s

0

[
�xy(u)� a(u)�yy(u)

r3(u)
� fy(u)]du

��
Z T

0

[a(s)fy(s) + �yy(s)(1 +
1

2
a2(s))ds;

�yz = ��
Z T

0

a(s)ds
Z s

0

fy(u)du;

�zx = ��
Z T

0

fz(s)(1 + a2(s))ds;

�zy = ��
Z T

0

fz(s)a(s)ds;

�zz = 1� �
Z T

0

�zz(s)(1 +
1

2
a2(s))

r3(s)
ds:
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FIGURES
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Fig. 1Displacement of the Debye cloud due to interaction with the laser

pulse.

Fig. 2 Regions of relative importance of ��corr in comparison with: a)

energy of collective plasma oscillations and b) spontaneous Compton losses.

Curves 1; 2; and 3 correspond to the electron temperature, Te, 1, 0:1 and 0:01

eV respectively. The pulse duration �!�1 is given with respect to �!�1
0

= 2� �

10�13. The region above each curve in Fig. (a) corresponds to ��corr=�pl > 1,

while in Fig (b) it corresponds to ��corr=�compt < 1.

Fig. 3 Electron moves along the trajectory AE in the �eld of the ion (at

the origin), when it is hit by the pulse at the point A. It is forced to move

along the new trajectory AB, which is almost the same as its trajectory in

the �eld of the pulse alone (drifting �gure eight). At the point B it leaves

the pulse with the exit velocity VB and starts to move along hyperbola CD,

BF being its axis of symmetry. Note, that trajectories AE, AB and CD do

not necessarily lie in the same plane.

Fig. 4 Components of the exit velocity , V x
c ; V

y
c ; V

z
c , respectively versus

initial xi position of the electron, with yi = 0; zi = 0:1. The magnitude

of velocity is presented in terms of c = 3 � 1010 cm { velocity of light, and

all lengths are measured in � = 10�5 cm { wavelength of radiation. The
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form of the pulse is chosen to be a(u) = sin(u); 0 < u < T , where T = 6�.

As z ! 0 the spikes on all graphs tend to �1, forming discontinuities.

This corresponds to electron crossing the ion at some point on its zero order

trajectory. The periodic behaviour of all plots is due to periodicity of the

zero order trajectory of the electron in x direction.

Fig. 5 Components of the exit velocity, V x
c ; V

y
c ; V

z
c , respectively, versus

initial yi position of the electron, with xi = 0; zi = 0:1. Plots do not exhibit

any periodicity due to the lack of periodicity in the zero order trajectory of

the electron in y direction.
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